Opiate Receptors

Prepared by:
Valbona Aliu
Pınar Önal
Alper Akay
Opiate Receptors

- Mechanism of Opiate Receptors
- Types and Actions of Opiate Receptors
- Common Opiates
- Effects of Opiates
Mechanism

Opioids are powerful analgesic agents and have been widely used in clinical pain management for decades. Opiate receptors presynaptically modulate the release of NTs;

- acetylcholine
- norepinephrine
- dopamine
- Serotonin
- substance P
Opiate receptors act on G-peptides, linked to post-synaptic intracellular enzymes (such as adenylyl cyclase) or ion channels (such as K+, Ca++). In high doses the opiates cause generalized CNS depression sufficient for surgical anesthesia.
Opioid receptor-evoked cellular responses

• Direct G-protein bg or a subunit-mediated effects
 . activation of an inwardly rectifying potassium channel
 . inhibition of voltage operated calcium channels (N, P, Q and R type)
 . inhibition of adenylyl cyclase
Responses of unknown intermediate mechanism

- activation of PLA2
- activation of PLCβ (possibly direct G protein bg subunit activation)
- activation of MAPKinase
- activation of large conductance calcium-activated potassium channels
- activation of L type voltage operated calcium channels
- inhibition of T type voltage operated calcium channels
- direct inhibition of transmitter exocytosis
<table>
<thead>
<tr>
<th>Receptor</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu(µ1)</td>
<td>Spinal and supraspinal analgesia</td>
</tr>
<tr>
<td>mu(µ2)</td>
<td>respiratory depression, euphoria, vomiting, inhibition of gut motility, physical dependence</td>
</tr>
<tr>
<td>delta(δ)</td>
<td>Spinal analgesia</td>
</tr>
<tr>
<td>kappa (κ)</td>
<td>Spinal analgesia, supraspinal analgesia</td>
</tr>
<tr>
<td>sigma(σ)</td>
<td>Dysphoria, hallucination, cardiac stimulation</td>
</tr>
</tbody>
</table>
Mu Opiate Receptor

Source: Goodman and Gillman 9th ed, p. 526
Classification of Narcotic Opiate Ligands

- **Narcotic agonists** include natural opium alkaloids (eg, morphine, codeine), semisynthetic analogs (eg, hydromorphone, oxymorphone, oxycodone), and synthetic compounds (eg, meperidine, levorphanol, methadone, sufentanil, alfentanil, fentanyl, remifentanil, levomethadyl).

- **Mixed agonist-antagonist drugs** (eg, nalbuphine, pentazocine) have agonist activity at some receptors and antagonist activity at other receptors; also included are the partial agonists (eg, butorphanol, buprenorphine).

- **Narcotic antagonists**: Narcotic antagonists (eg, naloxone) do not have agonist activity at any of the opioid receptor sites. Antagonists block the opiate receptor, inhibit pharmacological activity of the agonist, and precipitate withdrawal in dependent patients.
Effects of Opiates

- Pain
- Learning and Memory
- Food Consumption (preferred food)
- Gastrointestinal and other autonomic functions (respiration, temperature, cardiovascular function, endocrine responses)
References

• http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/D/Drugs.html#opiates
• http://www.wnet.org/closetohome/animation/opi-anim2-main.html
• http://www.bio.davidson.edu/courses/anphys/1999/Self/OpiateReceptors.htm